Exact multisoliton solution of the inhomogeneously broadened self-induced transparency equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1973 J. Phys. A: Math. Nucl. Gen. 6 L53
(http://iopscience.iop.org/0301-0015/6/5/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.73
The article was downloaded on 02/06/2010 at 04:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Exact multisoliton solution of the inhomogeneously broadened self-induced transparency equations

P J Caudrey, J C Eilbeck, J D Gibbon and R K Bullough
Department of Mathematics, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK

Received 2 April 1973

Abstract

An exact solution of the inhomogeneously broadened self-induced transparency equations is given which describes the multiple collision of N solitons with different velocities. The solution is the same as the sharp-line solution except that the amplitude dependent velocity of each soliton has a different functional form. An exact N soliton solution of the form of the broadened Maxwell-Bloch equations valid at low densities is also reported.

Recently an N soliton solution of the self-induced transparency (SIT) equations has been discovered for the resonant sharp-line limit (Gibbon and Eilbeck 1972, Caudrey et al 1973a) \dagger. In this letter we give N soliton solutions of the physically important inhomogeneously broadened equations; the solutions prove to be a natural extension of the sharp-line solutions. In dimensionless form the inhomogeneously broadened sit equations are (McCall and Hahn 1969, Lamb 1971):

$$
\begin{align*}
& E_{x}(x, t)+E_{t}(x, t)=\alpha\langle P(\Delta \omega, x, t)\rangle \tag{1}\\
& N_{t}(\Delta \omega, x, t)=-E(x, t) P(\Delta \omega, x, t) \tag{2a}\\
& P_{t}(\Delta \omega, x, t)=E(x, t) N(\Delta \omega, x, t)+\Delta \omega Q(\Delta \omega, x, t) \tag{2b}\\
& Q_{t}(\Delta \omega, x, t)=-\Delta \omega P(\Delta \omega, x, t) \tag{2c}
\end{align*}
$$

where for any $F(\Delta \omega)$

$$
\begin{equation*}
\langle F(\Delta \omega)\rangle=\int_{-\infty}^{+\infty} F\left(\Delta \omega^{\prime}\right) g\left(\Delta \omega^{\prime}\right) \mathrm{d}\left(\Delta \omega^{\prime}\right) \tag{3}
\end{equation*}
$$

The spectrum which characterizes the broadening, $g(\Delta \omega)$, is normalized such that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} g\left(\Delta \omega^{\prime}\right) \mathrm{d}\left(\Delta \omega^{\prime}\right)=1 \tag{4}
\end{equation*}
$$

E is the envelope modulating a strictly resonant carrier wave, P and Q are the out-ofphase and in-phase components of the microscopic polarization, N is a measure of the atomic inversion, and α is a dimensionless constant proportional to the density of model two-level atoms. The boundary conditions for an attenuating medium are E, $P, Q \rightarrow 0 ; N \rightarrow-1$ as $x \rightarrow \pm \infty$, and the constant of integration, $N^{2}+P^{2}+Q^{2}$, is unity. In the derivation of the sit equations (Lamb 1971) it is assumed that $g(\Delta \omega)$ and \dagger An equivalent solution of the closely related sine-Gordon equation has been given by Hirota (1972).
$Q(\Delta \omega, x, t)$ are even and odd functions respectively of $\Delta \omega$, so that $\langle Q\rangle=0$. This choice makes the slowly varying phase a constant.

The main result of this letter is that the N soliton solution of the inhomogeneously broadened sit equations (1), (2) is

$$
\begin{align*}
& E^{2}=4 \frac{\partial^{2}}{\partial t^{2}} \ln f(x, t) \tag{5a}\\
& f(x, t)=\operatorname{det} \mid M \tag{5b}
\end{align*}
$$

where the $N \times N$ matrix M has the form

$$
\begin{equation*}
M_{i j}(x, t)=\frac{2\left(E_{i} E_{j}\right)}{E_{i}+E_{j}}\left\{\exp \left(\theta_{i}\right)+(-1)^{i+j} \exp \left(-\theta_{j}\right)\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
& \theta_{i}=\omega_{i} t-\left\langle\kappa_{i}\right\rangle x+\delta_{i} \tag{7a}\\
& \omega_{1}=\frac{1}{2} E_{i} \tag{7b}\\
& \kappa_{i}=\omega_{i}\left[1+4 \alpha\left\{E_{i}^{2}+4(\Delta \omega)^{2}\right\}^{-1}\right] \tag{7c}
\end{align*}
$$

The E_{i} and δ_{i} are $2 N$ arbitrary constants determining the amplitude and phase respectively of the i th soliton.

The proof that equations (5)-(7) are an exact solution of (1), (2) is as follows. First we consider the simpler set of equations obtained by replacing (1) by

$$
\begin{equation*}
E_{x}+E_{t}=\alpha P \tag{8}
\end{equation*}
$$

E is now dependent on $\Delta \omega$. Equation (8) can be derived mathematically from equation (1) by putting $g\left(\Delta \omega^{\prime}\right)=\delta\left(\Delta \omega-\Delta \omega^{\prime}\right)$ but equations (2) and (8) and their solutions cannot be interpreted physically as the sharp-line off-resonance case since $g\left(\Delta \omega^{\prime}\right)$ is no longer symmetric. The exact N soliton solution of these equations is the same as (5)-(7) (Caudrey et al 1973b) with equation (7a) becoming

$$
\begin{equation*}
\theta_{i}=\omega_{i} t-\kappa_{i} x+\delta_{i} \tag{9}
\end{equation*}
$$

With the solution to equations (2), (8) known, the solution to equations (1), (2) can be constructed as follows. The dependence of E in (8) as a function of $\Delta \omega$ is entirely contained in the formulae for the θ_{i}. Considering E as a function of the θ_{i} (and the parameters E_{i}) enables the equations (2), (8) to be written in the form

$$
\begin{align*}
& \sum_{i}\left(\omega_{i}-\kappa_{i}\right) \frac{\partial}{\partial \theta_{i}} E=\alpha P \tag{10a}\\
& \sum_{i} \omega_{i} \frac{\partial}{\partial \theta_{i}} N=-E P \tag{10b}\\
& \sum_{i} \omega_{i} \frac{\partial}{\partial \theta_{i}} P=E N+\Delta \omega Q \tag{10c}\\
& \sum_{i} \omega_{i} \frac{\partial}{\partial \theta_{i}} Q=-\Delta \omega P \tag{10d}
\end{align*}
$$

Mathematically we can consider $\Delta \omega$ and the θ_{i} as independent variables in equations (10). Since in equation ($10 a$) the only dependence on $\Delta \omega$ is contained in κ_{i} and P, we
can multiply by $g(\Delta \omega)$ and integrate over $\Delta \omega$ to get

$$
\begin{equation*}
\sum_{i}\left(\omega_{i}-\left\langle\kappa_{i}\right\rangle\right) \frac{\partial}{\partial \theta_{i}} E=\alpha\langle P\rangle . \tag{11}
\end{equation*}
$$

It follows that the broadened sit equations (1), (2) are satisfied by E as defined in (5)-(7). This completes the proof. The simplicity of the proof depends on the linearity of the Maxwell equation (Bullough and Ahmad 1971); the introduction of nonlinearities in the Maxwell equation obviously causes difficulties with broadening (Matulic and Eberly 1972).

Once E is known N can be shown to be of the form

$$
\begin{equation*}
N=-1-2 \alpha^{-1} \sum_{i, j}\left(\omega_{i}-\kappa_{i}\right) \omega_{j} \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ln f \tag{12}
\end{equation*}
$$

and P and Q can be calculated from (2a) and (2b). It can be shown that Q is an odd function of $\Delta \omega$ and hence satisfies our original condition.

The similarity of the solutions of the sir equations with and without inhomogeneous broadening means that the properties of the sharp-line resonant solution $(g(\Delta \omega)=\delta(\Delta \omega))$ described in Gibbon and Eilbeck (1972) carry straight over to the broadened case, with the exception that the velocity of each soliton is now derived from $\left\langle\kappa_{i}\right\rangle$, instead of (7c) with $\Delta \omega=0$. In particular the total phase shift from a multiple collision is the same linear sum of two soliton terms involving the E_{i} only. Equations (5)-(7) can be used to obtain broadened 0π and $2 N \pi$ pulses in the same way as in the sharp-line limit.

Finally we note that our solution (5)-(7) is also an exact N soliton solution of the so called reduced Maxwell-Bloch (RMB) equations (Eilbeck et al 1973):

$$
\begin{align*}
& E_{x}+E_{t}=\alpha\left\langle r_{t}\right\rangle \tag{13a}\\
& u_{i}=-E s \tag{13b}\\
& s_{t}=\omega_{s} r+E u \tag{13c}\\
& r_{t}=-\omega_{s} s \tag{13d}
\end{align*}
$$

Equation (13a) is an approximate form of the full Maxwell equation in which backscattering is neglected. This approximation is valid at sufficiently low densities (Eilbeck et al 1973, Eilbeck 1972). Equations (13b)-(13d) are the normal Bloch-type equations for a two-level atom system with resonant frequency ω_{s}. Although equations (2), (8) and equations (13) are mathematically equivalent, an important physical difference is that (2), (8) describe the evolution of an envelope modulating a carrier wave whereas (13) describes the field. The RMB equations are inhomogeneously broadened in the same way as the SIT equations but with a distribution $g\left(\omega_{s}\right)$ in the resonance frequency instead of in the off-resonance parameter $\Delta \omega$.

One of us (JCE) would like to thank the SRC for the financial support of a research assistantship.

References

Caudrey P J, Eilbeck J C and Gibbon J D 1973b UMIST Math. Dept. Preprint TP/73/5 to be published Eilbeck J C 1972 J. Phys. A: Gen. Phys. 5 1355-63
Eilbeck J C, Gibbon J D, Caudrey P J and Bullough R K 1973 UMIST Math. Dept. Preprint TP/73/4 to be published
Gibbon J D and Eilbeck J C 1972 J. Phys. A: Gen. Phys. 5 L122-4
Hirota R 1972 J. Phys. Soc. Japan 33 1459-63
Lamb G L Jr 1971 Rev. mod. Phys. 43 99-124
Matulic L and Eberly J H 1972 Phys. Rev. A 6 822-36
McCall S L and Hahn E L 1969 Phys. Rev. 183 457-85

