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LETTER TO THE EDITOR 

Exact multisoliton solution of the inhomogeneously broadened 
self-induced transparency equations 

P J Caudrey, J C Eilbeck, J D Gibbon and R K Bullough 
Department of Mathematics, University of Manchester Institute of Science and 
Technology, PO Box 88, Manchester M60 IQD, UK 

Received 2 April 1973 

Abstract. An exact solution of the inhomogeneously broadened self-induced trans- 
parency equations is given which describes the multiple collision of N solitons with 
different velocities. The solution is the same as the sharp-line solution except that the 
amplitude dependent velocity of each soliton has a different functional form. An 
exact N soliton solution of the form of the broadened Maxwell-Bloch equations valid 
at low densities is also reported. 

Recently an N soliton solution of the self-induced transparency (SIT) equations has 
been discovered for the resonant sharp-line limit (Gibbon and Eilbeck 1972, Caudrey 
et a1 1973a)t. In this letter we give N soliton solutions of the physically important 
inhomogeneously broadened equations; the solutions prove to be a natural extension 
of the sharp-line solutions. In dimensionless form the inhomogeneously broadened 
SIT equations are (McCall and Hahn 1969, Lamb 1971): 

E&, t )  +E&, t> = Q. ( P ( A w ,  x, t)> 
Nt (Aw,x ,  t )  = -E(x,  t )P (Aw,x ,  t )  

Pt(Aw, X ,  t )  = E(x, t )N(Aw,  X ,  t )  + AwQ(Aw, X ,  t )  
Q t (Aw,x ,  t )  = - A w P ( A w , x ,  t ) ,  

where for any F(Aw) 

( F ( A w ) )  = j+m F(Aw’)g(Aw‘)d(Aw‘). 
- a  

The spectrum which characterizes the broadening, g(Aw), is normalized such that 

g(Aw’)d(Aw’) = 1. s’,” 

(3) 

E is the envelope modulating a strictly resonant carrier wave, P and Q are the out-of- 
phase and in-phase components of the microscopic polarization, N is a measure of the 
atomic inversion, and Q. is a dimensionless constant proportional to the density of 
model two-level atoms. The boundary conditions for an attenuating medium are E, 
P ,  Q + 0 ;  N + - 1 as x + k 03, and the constant of integration, N2 + P 2  + Q2, is unity. 
In the derivation of the SIT equations (Lamb 1971) it is assumed that g(Aw) and 
t An equivalent solution of the closely related sine-Gordon equation has been given by Hirota (1 972). 
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Q(Aw, x, t )  are even and odd functions respectively of Aw, so that (Q; = 0. This 
choice makes the slowly varying phase a constant. 

The main result of this letter is that the N soliton solution of the inhomogeneously 
broadened SIT equations (1). (2) is 

92 " 
E2 = 4- Inf(x, t )  

a 2  

f ( x ,  t )  = det [MI 

where the N x N matrix M has the form 

The Ei and Bi are 2 N  arbitrary constants determining the amplitude arid phase res- 
pectively of the ith soliton. 

The proof that equations (5)-(7) are an exact solution of (l), (2) is as follows. 
First we consider the simpler set of equations obtained by replacing ( I )  by 

E,+E, = c ~ P ;  f 8) 
E is now dependent on Aw.  Equation (8) can be derived mathematicullj~ from equa- 
tion (1) by putting g(Aw') = S(Aw - Aw') but equations (2)  and (8) and their solutions 
cannot be interpreted physical1.v as the sharp-line off-resonance case since g(Aw') is 
no longer symmetric. The exact N soliton solution of these equations is the same as 
(5)-(7) (Caudrey et a1 1973b) with equation (7a) becoming 

(9) 
With the solution to equations (2), (8) known, the solution to equations (l) ,  (2) ca11 be 
constructed as follows. The dependence of E in (8) as a function of A w  is entirely 
contained in the formulae for the O i .  Considering E as a function of the 8 ,  (and the 
parameters E,) enables the equations ( 2 ) ,  (8) to be written in the form 

= wit - K t X  + 6,. 

a 2 ut-Q =z - A w P .  
t a 4  

Mathematically we can consider A w  and the 8, as independent variables in equations 
(IO). Since in equation ( loa)  the only dependence on Aw is contained in K i  and P, we 
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can multiply by g(Aw) and integrate over A w  to get 

It follows that the broadened SIT equations (l) ,  (2) are satisfied by E as defined in 
(5)-(7). This completes the proof. The simplicity of the proof depends on the linearity 
of the Maxwell equation (Bullough and Ahmad 1971); the introduction of non- 
linearities in the Maxwell equation obviously causes difficulties with broadening 
(Matulic and Eberly 1972). 

Once E is known N can be shown to be of the form 
a2 

and P and Q can be calculated from (2a) and (2b). It can be shown that Q is an odd 
function of Aw and hence satisfies our original condition. 

The similarity of the solutions of the SIT equations with and without inhomogeneous 
broadening means that the properties of the sharp-line resonant solution 
(g(Aw) = 6(Aw)) described in Gibbon and Eilbeck (1972) carry straight over to the 
broadened case, with the exception that the velocity of each soliton is now derived 
from ( K ~ ) ,  instead of (7c) with Aw = 0. In particular the total phase shift from a 
multiple collision is the same linear sum of two soliton terms involving the El only. 
Equations (5)-(7) can be used to obtain broadened Or and 2Nr  pulses in the same way 
as in the sharp-line limit. 

Finally we note that our solution (5)-(7) is also an exact N soliton solution of the 
so called reduced Maxwell-Bloch (RMB) equations (Eilbeck et a1 1973) : 

Equation (13a) is an approximate form of the full Maxwell equation in which back- 
scattering is neglected. This approximation is valid at sufficiently low densities 
(Eilbeck et a1 1973, Eilbeck 1972). Equations (13b)-(13d) are the normal Bloch-type 
equations for a two-level atom system with resonant frequency us. Although equa- 
tions (2), (8) and equations (13) are mathematically equivalent, an important physical 
difference is that (2), (8) describe the evolution of an envelope modulating a carrier 
wave whereas (13) describes the jield. The RMB equations are inhomogeneously 
broadened in the same way as the SIT equations but with a distribution g(w,) in the 
resonance frequency instead of in the off-resonance parameter Aw. 

One of us (JCE) would like to thank the SRC for the financial support of a research 
assistantship. 
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